Справочник химика 21

Химия и химическая технология

Снеллиуса закон

При помощи этих двух соотношений уравнение (12) преобразуется в уравнение (10а), что доказывает его справедливость. Уравнение (12) выражает закон рефракции Снеллиуса световой луч отклоняется в сторону большей оптической плотности, т. е. в сторону положительного градиента показателя преломления. [c.24]

Закон Снеллиуса записывается в виде -= — = п , [c.479]

СВЯЗЬ ПРЕВРАЩЕНИЯ ПАРАМЕТРОВ СОПРОТИВЛЕНИЯ ЭЛЕКТРОЛИТОВ С ЗАКОНАМИ СНЕЛЛИУСА, ЗАКОНОМ ДЕЙСТВИЯ МАСС И ПРЕОБРАЗОВАНИЯМИ ЛОРЕНЦА [c.75]

Когда луч монохроматического света переходит из одной среды в другую, его скорость изменяется, а на границе раздела между средами изменяется также и его направление (если луч проходит границу раздела не перпендикулярно, рис. 84). Отклонение луча происходит по закону Снеллиуса [c.83]

Гл. I посвящена основным понятиям электрических параметров электрохимической системы гл. II — исследованию распределения потенциалов в зоне активной защиты в гл. Ill рассматривается элементарная электромагнитная теория электрического тока в растворах и электролитах гл. IV посвящена соотношению превращения параметров сопротивления почвенных электролитов и его связи с законами Снеллиуса в оптике, закона действия масс в физической химии и преобразованиями Лоренца в физике, в гл. V описывается оценка параметров в электродной цепи и производится их расчет. [c.3]

IV.I. ПРЕВРАЩЕНИЕ ПАРАМЕТРОВ СОПРОТИВЛЕНИЯ ЭЛЕКТРОЛИТОВ И ЗАКОН СНЕЛЛИУСА [c.75]

Согласно классической феноменологической Теории электричества и магнетизма параметры ец, усредненные во временном смысле, принимаются действительными некомплексными числами. Однако при взаимодействии электромагнитного излучения с веществом, воспринимающим это излучение, протекают быстропеременные во времени процессы, зависящие от концентрации частиц. Эти процессы сопровождаются изменениями электропроводности, плотности тока, образованием двойного электрического слоя и т. д. Отождествляя законы распространения света с законами распространения электромагнитной энергии, заметим, что сущность явлений при воздействии электромагнитной энергии на вещество наиболее полно отражают законы Снеллиуса и Максвелла. [c.75]

Однако закон Снеллиуса не учитывает изменения, происходящие в веществе под воздействием излучения (они для луча света незначительны), а закон Максвелла i= />/ не раскрывает превращений параметров электрического сопротивления электролитов под воздействием ЭДС постоянного тока. [c.75]

Показатель преломления обыкновенного луча По не зави сит от угла падения I и является величиной постоянной. Показатель преломления необыкновенного луча Пе зависит от угла падения а значит, и от направления, по которому этот луч распространяется, т. е. необыкновенный луч не подчиняется закону Снеллиуса—Декарта. [c.76]

Закон рефракции Снеллиуса [c.24]

Соотношение (17) выражает закон рефракции Снеллиуса в виде я sin а = яо sin ссо, который можно вывести непосредственно. Дальнейшее интегрирование уравнения (17) и, следовательно, расчет траектории луча y z) становятся возможными, только если известна функция я(у). И наоборот, по двум измеренным значениям [c.28]

Преломление света изотропными телами подчиняется законам Снеллиуса—Декарта. [c.73]

В кристаллах низших категорий оба плоскополяризованных луча необыкновенные и не подчиняются закону Снеллиуса—Декарта. В них показатели преломления определяются направлением, по которому распространяется луч света. [c.76]

Это выражение известно как закон Снеллиуса. На рис. 3.8 АО — направление падающего пучка света, а ОВ — отраженного пучка, так что угол падения i равен углу отражения /, но противоположен ему по знаку. Эти два пучка света находятся в среде с показателем преломления п . ОС — преломленный пучок света в среде с показателем преломления п . Угол преломления г таков, что [c.461]

Трансформация типа волны. Критические углы. Взаимодействие волны с поверхностью, разделяющей разнородные материалы. Закон Снеллиуса. [c.830]

При совпадении плоскости колебаний в падающей сдвиговой волне с плоскостью падения кроме сдвиговых волн с плоскостью колебаний, совпадающей с плоскостью падения, появляются отраженные и преломленные продольные волны. Их возникновение связано со сложным характером граничных условий на поверхности раздела, которым невозможно удовлетворить при наличии только сдвиговых компонент смещения. Углы отражения и преломления снова связаны между собой законом Снеллиуса [c.51]

Падение продольной волны (рис. 2.6) вызывает кроме отраженных и преломленных продольных волн сдвиговые волны с плоскостью колебаний, совпадающей с плоскостью падения. Направления распространения отраженных и преломленных волн характеризуются углами отражения и и углами преломления Yl и у5. Углы падения, отражения и преломления в обеих средах опять-таки связаны законом Снеллиуса [c.51]

В заключение отметим, что анизотропия свойств материалов приводит к необходимости рассмотрения коэффициентов передачи не для амплитуд, а для потоков энергии на границе двух сред. Применимость законов Снеллиуса также ограничена — могут наблюдаться заметные отклонения от него, в частности плоскости падения и преломления могут не совпадать. [c.54]

В кристаллах низших категорий оба плоскополяризованных луча необыкновенные и не подчиняются закону Снеллиуса—Декарта. В них показатели преломления определяются направлением, по которому распространяется луч света. В кристаллах кубической сингонии нет двойного лучепреломления. Свет, попадая в кристаллы этой категории, не поляризуется и распространяется по всем направлениям с одинаковой скоростью. [c.52]

Согласно законам Снеллиуса [c.88]

Для идентификации жидких веществ и проверки их чистоты можно использовать также определение показателя преломления п. Если луч монохроматического света проходит через границу раздела двух сред (рис. 83), то он отклоняется от первоначального направления по закону Снеллиуса [c.119]

Показатель преломления среды п — = dv. Здесь V — групповая скорость, с — скорость света в вакууме. Для изотропных тел обычно можно пренебречь различием Vn я v . В изотропной среде как для vn, так и для удовлетворяется закон Снеллиуса — Декарта п == sin г /sin г i — угол падения, г — угол преломления) луч падающий, луч преломленный и нормаль к плоскости падения лежат в одной плоскости. [c.223]

Нетрудно видеть, что это выражение учитывает изменения, происходящие в веществе, и отличается от закона Снёллиуса величиной 1/ os ф. Закон Снеллиуса можно тотчас же получить из выражения (80), если представить os ф через параметры Z и / , пренебрегая превращениями параметров, происходящими под воздействием внешнего источника. Тогда [c.76]

Учитывая малую ширину стеклянной кюветы, для простоты будем считать, что траектории лучей проходят через область с постоянным местным градиентом показателя преломления dnjdy. Кроме того, поскольку ожидаются малые углы отклонения света е, траектория луча заменяется дугой окружности с горизонтальной касательной в плоскости входа. Согласно уравнению (Юа), 1/ = = /n dn dy. Кроме того, в соответствии с уравнением распространения светового луча e = l,/R. Световой луч дополнительно отклоняется при входе в воздух, поэтому окончательный угол отклонения по закону рефракции Снеллиуса (Лвозд 1) равен [c.43]

Показатель преломления. Третьей константой, характеризующей жидкое вещество, является показатель преломления п. Согласно закону Снеллиуса, он соответствует углу полного внутреннего отражения. Его определяют с помощью рефрактометра. Поскольку показатель преломления зависит от температуры (чаще всего измеряют при 20 °С) и длины волны света (обычно й-лииия натрия, 598,3 нм), то эти параметры обязательно указываются вместе с величиной показателя гтреломлеиия [c.31]

Явление ПВО и условия его возникновения достаточно хорошо известны (рис. 14.4.62). При внутреннем отражении (и, > ) угол преломления р больше угла падения 0 с увеличением 0 угол р приближается к 90°. Угол 0кр, для которого р = 90° (свет распространяется вдоль границы раздела), называется критическим и определяется из закона Снеллиуса (sinp = 1, sin0 = з,) [c.479]

Повышение температуры увеличивает угол ввода. Это связано с изменением скорости УЗ. Скорость уменьшается одновременно в металле ОК и призме преобразователя, но в пластмассе, из которой сделана призма, уменьшение скорости гораздо больше (см. разд. 1.1.3), поэтому согласно закону синусов (закону Снеллиуса) а = ar sin (с /с )sin (с и с — скорости звука в изделии и призме) с повышением температуры угол а увеличивается. Это особенно заметно, когда угол ввода приближается ко второму критическому. В связи с этим проверку угла ввода или нас- [c.209]

Смотреть страницы где упоминается термин Снеллиуса закон: [c.27] [c.274] [c.130] [c.180] [c.75] [c.96] [c.96] [c.42] [c.50] [c.91] [c.215] [c.14] [c.226] [c.21] Органикум. Практикум по органической химии. Т.2 (1979) — [ c.117 ]

Органическая химия (1979) — [ c.31 ]

Общий практикум по органической химии (1965) — [ c.91 ]

chem21.info

Законам снеллиуса

3.1. Основные законы геометрической оптики

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0 . Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости ( плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Закон преломления был экспериментально установлен голландским ученым В. Снеллиусом в 1621 г.

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления .

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 1 – абсолютный показатель преломления первой среды.

Для границы раздела стекло–воздух ( n = 1,5 ) критический угол равен αпр = 42° , для границы вода–воздух ( n = 1,33 ) αпр = 48,7° .

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

physics.ru

Закон Снеллиуса (Закон преломления)

На мой взгляд, начало оптического проектирования было положено в 1621 году. В этом году Снеллиус сформулировал закон преломления, который гласит, что если угол между падающим лучом и нормалью поверхности проведенной к точке падения, названный углом падения, обозначить через ; и если угол преломления – угол между преломленным углом и нормалью – обозначить через ; тогда взаимосвязь этих углов будет определяться следующим выражением

Кроме того, закон Снеллиуса полагает, что падающий луч, преломленный луч и нормаль проведенная к точке падения находятся в одной плоскости (рисунок 1). Величины и – коэффициенты преломления двух материалов. В то время как выражение (1.1) может быть принято за определение коэффициента преломления материала, более фундаментально эта величина определяется как

где – скорость света в вакууме, а – скорость света в веществе.

Рисунок 1.2 – Закон Снеллиуса (закон преломления)

Поскольку для любой поверхности отношение коэффициентов преломления определяет угол преломленного луча, то удобно записать

так что закон Снеллиуса упростится до следующего выражения

В случае отражения (рисунок 1.3), угол отраженного луча равен углу падения. Эти два угла имеют противоположный знак, согласно правило знаков для углов при распространении лучей. Следовательно, закон отражения можно представить как

При разработке оптики, отражение обычно принимают за частный случай преломления со следующими условиями

или (1.6)

Этот метод очень полезен при разработке центрированных систем с отражающими поверхностями, т.к. формула для преломления может быть применена к отражающей поверхности практически без изменений при условии, что мы примем на вооружение правило, что коэффициент преломления изменяет свой знак после каждого отражения. После четного числа отражений, когда лучи распространяются в том же направлении, в котором они распространялись первоначально, коэффициент преломления будет положительным; после нечетного числа отражений коэффициенту преломления будет присвоено отрицательное значение.

Рисунок 1.3 – Закон отражения

В случае сложных децентрированных систем – систем с наличием нескольких поворотных зеркал – это соглашение (условие, что после отражения коэффициент преломления остается прежним, но со знаком минус) может сбить с толку. Возможно в этом случае более удобно рассматривать отражения как отдельный случай, оставляя все коэффициенты преломления положительными.

optoelectrosys.ru

Закон Снеллиуса

Угол преломления луча при прохождении границы между двумя средами зависит от соотношения коэффициентов преломления этих сред.

Теория относительности заставила нас усвоить, что ничто не движется быстрее света, но при этом в такой формулировке имеется одна маленькая хитрость, о которой часто забывают. Теоретики, говоря «скорость света», имеют в виду скорость света в вакууме, которую принято обозначать латинской буквой с, и для них это настолько самоочевидно, что дополнение «в вакууме» они обычно не озвучивают. А ведь при распространении света в прозрачной среде, например, воде или стекле, он движется значительно медленнее скорости с из-за непрерывного взаимодействия с атомами материальной среды.

Так что же происходит с фронтом световой волны при ее прохождении через границу двух прозрачных сред? Ответ на это дает закон Снеллиуса (или «закон Снелля», если следовать не латинскому, а голландскому написанию. — Прим. переводчика), названный по имени голландского естествоиспытателя Виллеброрда Снеллиуса, впервые сформулировавшего эту закономерность. Важнейший пример такого преломления мы наблюдаем при попадании светового луча из воздуха в стекло и затем снова в воздух — а именно это происходит (причем зачастую неоднократно) в любом оптическом приборе, будь то сложнейшее лабораторное оборудование или банальная пара очков. Представьте себе туристов, идущих гуськом по диагонали через квадратное поле, посередине которого, параллельно двум его сторонам, проходит граница, после которой начинается болото. Понятно, что по чистому полю туристы могут идти быстрее, а по болотной жиже — медленнее. И вот, когда первые туристы доходят до края болота и начинают вязнуть в грязи, скорость их продвижения падает, и они, как нормальные люди, отклоняются от курса, чтобы поскорее добраться до противоположного края болота, в то время как идущие следом движутся с прежней скоростью и в прежнем направлении. По мере залезания в болото всё новых туристов они также сбрасывают скорость и начинают срезать угол. В итоге с высоты птичьего полета процессия туристов выглядит преломленной — по полю она идет в одном направлении, а по болоту — в другом. То же и со световым лучом: если при пересечении границы двух сред скорость света во второй среде ниже, чем скорость света в первой среде, луч отклоняется в сторону нормали (линии, перпендикулярной границе). Если же во второй среде скорость распространения света выше (как, например, при переходе света из стекла в воздух), луч, напротив, отклонится от нормали на больший угол (туристы ускорят шаг и спрямят направление).

Отношение скорости света в вакууме к скорости света в среде называется коэффициентом преломления среды. Так, коэффициент преломления стекла равен примерно 1,5 (зависит от сорта стекла), то есть, свет в стекле замедляется примерно на треть по сравнению со скоростью его распространения в вакууме. У каждого прозрачного материала — собственный коэффициент преломления (совпадения, конечно же, возможны, но они ни о чем не говорят).

Закон Снеллиуса устанавливает числовое соотношение между углами падения и преломления луча при переходе из одной среды в другую. Если θ1 и θ2 — углы, соответственно, падения и преломления относительно нормали (см. рисунок) при переходе луча из одной среды в другую, а n1 и n2 — коэффициенты преломления этих сред, то имеет место соотношение:

Смысл этого закона в том, что если известны коэффициенты преломления света в двух граничащих средах и угол падения луча, можно рассчитать, насколько отклонится луч после пересечения границы между средами.

Доводилось ли вам когда-либо стоять у бортика бассейна и удивляться, отчего это у вашей подруги, стоящей по пояс в воде, ноги кажутся непропорционально короткими? А всё дело в том, что световые лучи, которые вы воспринимаете и которые доносят до вас зрительный образ, выйдя из воды и попав в воздух, преломились — и достигают ваших глаз под более тупым углом, чем если бы бассейн стоял без воды. Мозг же верит глазам, и вам кажется, что ступни вашей подруги ближе, чем они есть на самом деле.

elementy.ru

3.1.1 Основные законы волоконной оптики

Свет представляет собой один из видов электромагнитной энергии, также как радиоволны, теле-, радио- и радиолокационные сигналы. Электромагнитные волны (рис. 3.1) представляют собой переменные магнитные и электрические поля, перпендикулярные друг другу и направлению распространения (рис. 3.1).


Рис. 3.1 Электромагнитная волна

Главное отличие различных электромагнитных волн заключается в их частоте или длине волны. Частота определяется числом синусоидальных колебаний за секунду и выражается в герцах (Гц). Длина волны — это расстояние между идентичными точками двух последовательных волн (или расстояние, которое проходит волна за один цикл колебаний). Длина волны и частота взаимосвязаны. Длина волны (λ) равна скорости волны (ν), деленной на ее частоту (f):

Волны оптического диапазона можно разделить на три больших группы: инфракрасные, видимый свет с длинами волн от приблизительно 400 до 700 нм, и ультрафиолетовые. Длина волны, используемая в волоконной оптике, соответствует характеристикам передачи конкретного волокна. Большинство оптических волокон используют кварцевое стекло, которое наиболее прозрачно в ближней инфракрасной зоне, от 700 до 1600 нм. Пластиковые волокна лучше всего работают в видимой зоне.

Оценим ширину полосы оптического диапазона от λ1 = 750 нм до λ2 = 860 нм (приблизительно первое окно прозрачности). Зная скорость света с = 3*10 8 м/с, получим соответственно f1 = 4*10 14 Гц = 400 ТГц и f2 = 350 ТГц. Следовательно, частотный интервал ΔF=50 ТГц. Для сравнения: весь диапазон частот — от звукового диапазона до верхней частоты СВЧ диапазона составляет только 30 ГГц, то есть в 1600 раз меньше оптического. Число ТВ каналов, которое умещается в этом частотном интервале, составит m = 5*10 6 . Это говорит о колоссальной емкости оптического волокна.

Электромагнитная природа оптического (светового) излучения означает, что строгое исследование процесса распространения световых волн в ОВ может быть выполнено лишь на основе уравнений электродинамики (уравнений Максвелла). Это сложная задача даже при рассмотрении простейших ОВ. Поэтому процесс распространения световых волн рассмотрим методами геометрической оптики, которые отличаются простотой и наглядностью.

Известно, что в геометрической оптике световые волны изображают лучами, направленными по нормали к волновой поверхности. В оптически однородных средах лучи прямолинейны. При падении световой волны на плоскую границу раздела двух оптически прозрачных диэлектриков в общем случае появляются отраженная и преломленная (прошедшая) волны.

В соответствии с законами Снеллиуса угол падения φ связан с углами отражения φотр, преломления φпр (рис. 3.2, а) следующими соотношениями:

где n1 и n2 — показатели преломления смежных сред.


Рис. 3.2 Пояснение волновых процессов на границе двух сред при n1 > n2

Если n1 > n2, т.е. световая волна падает из оптически более плотной среды на границу раздела с оптически менее плотной средой, то, согласно (3.1), всегда существует критический (предельный) угол падения φ = φкр, при котором φпр= π/2, т.е. преломленная волна распространяется вдоль границы раздела сред:

Предельный режим показан на рисунке 3.2, б.

При всех углах падения φ > φкр преломленная волна отсутствует, и свет полностью отражается от поверхности оптически менее плотной среды (рис. 3.2, в). Это явление называется полным внутренним отражением.

Таким образом, как фактически распространяется свет по ОВ, лучше всего объяснить, используя закономерности геометрической оптики и закон Снеллиуса. Упрощенно можно сказать, что когда свет переходит из среды с большим показателем преломления в среду с меньшим показателем преломления, преломленный луч отклоняется от нормального. Чем больше становится угол падения на границу раздела, тем больше отклоняется преломленный луч от нормального луча, до тех пор, пока преломленный луч не достигает угла в 90°, по отношению к нормальному, и начинает скользить по поверхности раздела.

extusur.net

Это интересно:

  • Георгиевский оВ правила выполнения архитектурно-строительных чертежей Георгиевский - Правила выполнения архитектурно-строительных чертежей О. В. ГеоргиевскийПравила выполнения архитектурно-строительныхчертежейОлег Викторович Георгиевский,кандидат технических наук,профессор кафедры начертательной […]
  • Приказ верит в чудеса Приказ верит в чудеса Рассказ, написанный в соавторстве с другом. Ранее выкладывался на фрпг, на конкурс. Название рабочее, отрывок из песни Би-2 – «Волки». Эпиграфом к первой главе и ко всему рассказу выступает стихотворение, взятое […]
  • Следы крови экспертиза Криминалистическое исследование следов биологического происхождения К следам биологического происхождения относятся: кровь и ее следы; следы спермы; волосы и другие выделения человеческого организма. Указанные следы несут разыскную […]
  • Оглавление закона об образовании Общеобразовательные организации. Оглавление рабочей тетради Раздел I. Общеобразовательная организация как юридическое лицо § 1. Понятие и виды юридических лиц § 2. Организационно-правовые формы образовательных организаций § 3. […]
  • Закон о промбезопасности 2018 Ростехнадзор предлагает внедрить дистанционные методы мониторинга в сфере обеспечения промышленной безопасности Представленным ведомством для независимой антикоррупционной экспертизы законопроектом предполагается установить, что […]
  • Хеопс когда правил Чем знаменательно время правления фараона Хеопса? Имя Хеопса знакомо каждому жителю планеты. Такую известность этот древний правитель приобрел благодаря Великой пирамиде на плато Гиза, названной в его честь. Но чем еще известен этот […]