Геометрия 7 класс теоремы и доказательства

  1. Геометрия – наука, занимающаяся изучением геометрических фигур (в переводе с греческого слово «геометрия» означает «землемерие» ).
  2. В планиметрии изучаются свойства фигур на плоскости. В стереометрии изучаются свойства фигур в пространстве.
  3. Отрезок — это часть прямой, ограниченная двумя точками. Эти точки называются концами отрезка.
  4. Угол — это геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки. Лучи называются сторонами угла. а точка — вершиной угла .
  5. Угол называется развёрнутым. если обе его стороны лежат на одной прямой. ( Развёрнутый угол равен 180°).
  6. Две геометрические фигуры называются равными. если их можно совместить наложением.
  7. Середина отрезка — это точка отрезка, делящая его пополам, т.е. на два равных отрезка.
  8. Биссектриса угла — это луч, исходящий из вершины угла и делящий его на два равных угла.
  9. Угол называется прямым. если он равен 90°.
  10. Угол называется острым. если он меньше 90° (т.е. меньше прямого угла).
  11. Угол называется тупым. если он больше 90°, но меньше 180°. (т.е. больше прямого, но меньше развёрнутого).
  12. Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой, называются смежными. Сумма смежных углов равна 180°.
  13. Два угла называются вертикальными. если стороны одного угла являются продолжениями сторон другого. Вертикальные углы равны.
  14. Две пересекающиеся прямые называются перпендикулярными. если они образуют четыре прямых угла.
  15. Треугольник — это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой и трех отрезков, соединяющих эти точки. Точки называются вершинами. а отрезки— сторонами треугольника.
  16. Если два треугольника равны, то элементы (т.е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника.
  17. Теорема – утверждение, справедливость которого устанавливается путём рассуждений. Сами рассуждения называются доказательством теоремы .
  18. (Т. Первый признак равенства треугольников ) Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
  19. . о перпендикуляре к прямой ) Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
  20. Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
  21. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.
  22. Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
  23. (Свойства медианы, биссектрисы и высоты треугольника) В любом треугольнике медианы пересекаются в одной точке; биссектрисы пересекаются в одной точке; высоты или их продолжения также пересекаются в одной точке.
  24. Треугольник называется равнобедренным. если две его стороны равны. Равные стороны называются боковыми сторонами, а третья сторона — основанием равнобедренного треугольника.
  25. Треугольник называется равносторонним. если все его стороны равны.
  26. (Т. о свойстве равнобедренного треугольника ) В равнобедренном треугольнике углы при основании равны.
  27. (Т. о свойстве равнобедренного треугольника ) В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
  28. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
  29. В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой.
  30. (Т. Второй признак равенства треугольников ) Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
  31. (Т. Третий признак равенства треугольников ) Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
  32. Окружностью называется геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки. Данная точка называется центром окружности.
  33. Радиус окружности – отрезок, соединяющий центр окружности с какой-либо её точкой.
  34. Отрезок, соединяющий две точки окружности, называется ее хордой .
  35. Хорда, проходящая через центр окружности, называется диаметром .
  36. Круг — это часть плоскости, ограниченная окружностью.
  37. Две прямые на плоскости называются параллельными. если они не пересекаются.
  38. При пересечении двух прямых секущей образуется восемь углов: накрест лежащие. односторонние и соответственные.
  39. (Т. Признак параллельности двух прямых по накрест лежащим углам ) Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
  40. (Т. Признак параллельности двух прямых по соответственным углам ) Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
  41. (Т. Признак параллельности двух прямых по односторонним углам ) Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
  42. Аксиомы – это утверждения о свойствах геометрических фигур, которые принимаются в качестве исходных положений, на основе которых доказываются теоремы и строится вся геометрия.
  43. (Аксиома) Через любые две точки проходит прямая, и притом только одна.
  44. (Аксиома параллельных прямых) Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
  45. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
  46. Если две прямые параллельны третьей прямой, то они параллельны.
  47. Во всякой теореме две части: условие (то, что дано) и заключение (то, что требуется доказать).
  48. Теоремой, обратной данной, называется такая теорема, в которой условием является заключение данной теоремы, а заключением – условие данной теоремы.
  49. (Т.Свойство параллельных прямых ) Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
  50. (Т.Свойство параллельных прямых ) Если две параллельные прямые пересечены секущей, то соответственные углы равны.
  51. (Т.Свойство параллельных прямых ) Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
  52. (Т. о сумме углов треугольника ) Сумма углов треугольника равна 180°.
  53. Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника.
  54. Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
  55. Если все три угла треугольника острые, то треугольник называется остроугольным .
  56. Если один из углов треугольника тупой, то треугольник называется тупоугольным .
  57. Если один из углов треугольника прямой, то треугольник называется прямоугольным .
  58. Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой. а две стороны, образующие прямой угол — катетами .
  59. (Т. о соотношениях между сторонами и углами треугольника ) В треугольнике против большей стороны лежит больший угол, и обратно, против большего угла лежит большая сторона.
  60. В прямоугольном треугольнике гипотенуза больше катета.
  61. (Признак равнобедр. треугольника) Если два угла треугольника равны, то треугольник равнобедренный.
  62. (Т. Неравенство треугольника) Каждая сторона треугольника меньше суммы двух других сторон.
  63. (Свойство прямоугольного треугольника ) Сумма двух острых углов прямоугольного треугольника равна 90°.
  64. (Свойство прямоугольного треугольника ) Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.
  65. (Свойство прямоугольного треугольника ) Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.
  66. (Признак равенства прямоугольных треугольников по двум катетам ) Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
  67. (Признак равенства прямоугольных треугольников по катету и острому углу ) Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему острому углу другого, то такие треугольники равны.
  68. (Т.Признак равенства прямоугольных треугольников по гипотенузе и острому углу ) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
  69. . Признак равенства прямоугольных треугольников по гипотенузе и катету ) Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.
  70. Расстоянием от точки до прямой называется длина перпендикуляра, проведённого из этой точки к прямой.
  71. (Т. Свойство параллельных прямых) Все точки каждой из двух параллельных прямых равноудалены от другой прямой.
  72. Расстоянием между параллельными прямыми называется расстояние от произвольной точки одной из параллельных прямых до другой прямой.

188.123.231.15 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Теоремы и доказательства

Правильность утверждения о свойстве той или иной геометрической фигуры устанавливается путем рассуждения. Это рассуждение называется доказательством. А само утверждение, которое доказывается, называется теоремой. Приведем пример.

Теорема 1.1.Если прямая, не проходящая ни через одну из вершин треугольника, пересекает одну из его сторон, то она пересекает только одну из двух других сторон.

Доказательство. Пусть прямая а не проходит ни через одну из вершин треугольника ABC и пересекает его сторону АВ (рис. 26). Прямая а разбивает плоскость на две полуплоскости. Точки А и В лежат в разных полуплоскостях, так как отрезок АВ пересекает прямую а. Точка С лежит в одной из этих полуплоскостей.

Если точка С лежит в одной полуплоскости с точкой А, то отрезок АС не пересекает прямую а, а отрезок ВС пересекает эту прямую (рис. 26, а).

Если точка С лежит в одной полуплоскости с точкой В, то отрезок АС пересекает прямую а, а отрезок ВС не пересекает (рис. 26,6).

В обоих случаях прямая а пересекает только один из отрезков АС или ВС. Вот и все доказательство.

Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы.

Условие теоремы 1.1 состоит в том, что прямая не проходит ни через одну вершину треугольника и пересекает одну из его сторон. Заключение теоремы состоит в том, что эта прямая пересекает только одну из двух других сторон Треугольники.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Лекция добавлена 25.08.2012 в 04:30:19

© Учёба-Легко.РФ, Санкт-Петербург, 2010-2017 гг. [email protected]

Вопрос 1. Докажите первый признак равенства треугольников. Какие аксиомы используются при доказательстве теоремы 3.1?
Ответ. Первый признак равенства треугольников — Теорема 3.1. (признак равенства треугольников по двум сторонам и углу между ними). Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство.
Пусть у треугольников ABC и A1 B1 C1 угол A= углу A1. AB=A1 B1. AC=A1 C1 (рис. 44).

Рис. 44.
Докажем, что треугольники равны.

Пусть A1 B2 C2 — треугольник, равный треугольникуABC, с вершиной B2 на луче A1 B1 и вершиной C2 в той же полуплоскости относительно прямой A1 B1. где лежит вершина C1 (рис. 45, а).

Так как A1 B1 =A1 B2. то вершина B2 совпадает с вершиной B1 (рис. 45, б). Так как угол B1 A1 C1 = углу B2 A1 C2. то луч A1 C2 совпадает с лучом A1 C1 (рис. 45, в). Так как A1 C1 =A1 C2. то вершина C2 совпадает с вершиной C1 (рис. 45, г).
Итак, треугольник A1 B1 C1 совпадает с треугольником A1 B2 C2. значит, равен треугольнику ABC. Теорема доказана.
В начале доказательства рисуют треугольник A1 B2 C2 равный треугольнику ABC с вершиной B2 на луче A1 B1 и вершиной C2 в той же полуплоскости относительно прямой A1 B1. где лежит вершина C1 (рис. 45, а). Такой треугольник существует по аксиоме о существовании треугольника, равного данному (каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой).
Затем утверждается совпадение вершин B1 и B2 на том основании, что A1 B1 = A1 B2. Здесь используется аксиома откладывания отрезков (на любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один).
Далее утверждается совпадение лучей A1 C2 и A1 C1 на том основании, что \(\angle\)B2 A1 C1 = \(\angle\)B2 A1 C2. Здесь используется аксиома откладывания углов (от любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один).
Наконец, утверждается совпадение вершин C1 и C2. так как A1 C1 = A2 C2. Здесь снова используется аксиома откладывания отрезков (на любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один).
Итак, при доказательстве теоремы 3.1 используются аксиомы откладывания отрезков и углов и аксиома о существовании треугольника, равного данному.

Вопрос 2. Сформулируйте и докажите второй признак равенства треугольников.
Ответ. Второй признак равенства треугольников — Теорема 3.2 (признак равенства треугольников по стороне и прилежащим к ней углам). Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
Доказательство. Пусть ABC и A1 B1 C1 — два треугольника, у которых AB= A1 B1. угол A= углу A1 и угол B= углу B1 (рис. 47).

Докажем, что треугольники равны.
Пусть A1 B2 C2 — треугольник, равный треугольнику ABC, с вершиной B2 на луче A1 B1 и вершиной C2 в той же полуплоскости относительно прямой A1 B1. где лежит вершина C1 .
Так как A1 B2 =A1 B1. то вершина B2 совпадает с вершиной B1. Так как угол B1 A1 C2 = углу B1 A1 C1 и угол A1 B1 C2 = углу A1 B1 C1. то луч A1 C2 совпадает с лучом A1 C1. а луч B1 C2 совпадает с лучом B1 C1. Отсюда следует, что вершина C2 совпадает с вершиной C1 .
Итак, треугольник A1 B1 C1 совпадает с треугольником A1 B2 C2. а значит, равен треугольнику ABC. Теорема доказана.

Вопрос 3. Какой треугольник называется равнобедренным? Какие стороны равнобедренного треугольника называются боковыми сторонами? Какая сторона называется основанием?
Ответ. Треугольник называется равнобедренным, если у него две стороны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.

Вопрос 4. Докажите, что в равнобедренном треугольнике углы при основании равны.
Ответ. Теорема 3.3 (свойство углов равнобедренного треугольника). В равнобедренном треугольнике углы при основании равны.
Доказательство. Пусть ABC- равнобедренный треугольник с основанием AB (рис. 48). Докажем, что у него угол A= углу B.

Треугольник CAB равен треугольнику CBA по первому признаку равенства треугольников. Действительно, CA= CB, CB= CA, угол C= углу C. Из равенства треугольников следует, что угол A= углу B. Теорема доказана.

Вопрос 5. Какой треугольник называется равносторонним?
Ответ. Треугольник, у которого все стороны равны, называется равносторонним.

Вопрос 6. Докажите, что если в треугольнике два угла равны, то он равнобедренный.
Ответ. Теорема 3.4 (признак равнобедренного треугольника). Если в треугольнике два угла равны, то он равнобедренный.
Доказательство.
Пусть ABC – треугольник, в котором угол A= углу B (рис. 50). Докажем, что он равнобедренный с основанием AB.

Треугольник ABC равен треугольнику BAC по второму признаку равенства треугольников. Действительно, AB=BA, угол B= углу A, угол A= углу B. Из равенства треугольников следует, что AC= BC. Значит, по определению треугольник ABC равнобедренный. Теорема доказана.

Вопрос 7. Объясните, что такое обратная теорема. Приведите пример. Для всякой ли теоремы верна обратная?
Ответ. Теорема 3.4 называется обратной теореме 3.3. Заключение теоремы 3.3 является условием теоремы 3.4. А условие теоремы 3.3 является заключением теоремы 3.4. Не всякая теорема имеет обратную, то есть если данная теорема верна, то обратная теорема может быть неверна. Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Вопрос 8. Что такое высота треугольника?
Ответ.Высотой треугольника, опущенной из данной вершины, называется перпендикуляр, проведённый из этой вершины к прямой, которая содержит противолежащую сторону треугольника (рис. 51, а-б).

Вопрос 9. Что такое биссектриса треугольника?
Ответ.Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне (рис. 52, а).

Вопрос 10. Что такое медиана треугольника?
Ответ.Медианой треугольника, проведённой из данной вершины, называется отрезок, соединяющий эту вершину с серединой противолежащей стороны треугольника (рис. 52, б).

Вопрос 11. Докажите, что в равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.
Ответ. Теорема 3.5 (свойство медианы равнобедренного треугольника). В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.
Доказательство.
Пусть ABC – данный равнобедренный треугольник с основанием AB и CD – медиана, проведённая к основанию (рис. 53).

Треугольники CAD и CBD равны по первому признаку равенства треугольников. (У них стороны AC и BC равны, потому что треугольник ABC равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Сторона AD и BD равны, потому что D – середина отрезка AB.)
Из равенства треугольников следует равенство углов: угол ACD = углу BCD, угол ADC = углу BDC. Так как углы ACD и BCD равны, то CD – биссектриса. Так как углы ADC и BDC смежные и равны, то они прямые, поэтому CD – высота треугольника.

Вопрос 12. Докажите третий признак равенства треугольников.
Ответ. Третий признак равенства треугольников — Теорема 3.6 (признак равенства треугольников по трём сторонам). Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны.

Требуется доказать, что треугольники равны.
Допустим, треугольники не равны. Тогда у них угол A не = углу A1. угол B не = углу B1. угол C не = углу C1. Иначе они были бы равны по первому признаку.
Пусть A1 B1 C2 – треугольник, равный треугольнику ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1 B1 (см. рис. 55).
Пусть D – середина отрезка C1 C2. Треугольники A1 C1 C2 и B1 C1 C2 – равнобедренные с общим основанием C1 C2. Поэтому их медианы A1 D и B1 D являются высотами. Значит, прямые A1 D и B1 D перпендикулярны прямой C1 C2. Прямые A1 D и B1 D не совпадают, так как точки A1. B1. D не лежат на одной прямой. Но через точку D прямой C1 C2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.

Комментарии

Кирилл, если 3 угла одного треугольника равны 3 углам другого треугольника, то такие треугольники ПОДОБНЫЕ.

Теоремы и доказательства. Полные уроки

ТЕМА УРОКА: Теоремы и доказательства.

  • Образовательные – объясненный учащимся самого происхождения слов «Теорема» и «Доказательство»;
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные — посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.
  • Формировать навыки математической речи, правильного понимания математических определений.
  • Проверить умение учащихся запоминать и воспроизводить информацию полученную в течении урока.
  1. Введение, общие понятия про геометрию;
  2. Теорема;
  3. Доказательство;
  4. Задание для самостоятельной проверки.

Традиционно считается, что родоначальниками геометрии как систематической науки являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в строгую научную дисциплину. При этом античные геометры от набора рецептов перешли к установлению общих закономерностей, составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают составленные около 300 до н. э. «Начала» Евклида. Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом.

Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых, плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием.
Женщина обучает детей геометрии. Иллюстрация из парижской рукописи Евклидовых «Начал», начало XIV века.

Муза геометрии, Лувр.

Женщина обучает детей геометрии. Иллюстрация из парижской рукописи Евклидовых «Начал», начало XIV века.

Средние века немного дали геометрии, и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода («Рассуждение о методе», 1637). Точкам сопоставляются наборы чисел, это позволяет изучать отношения между формами методами алгебры. Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Примерно одновременно с этим Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название проективной геометрии. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии, где фигуры и преобразования все ещё задаются в координатах, но уже произвольными достаточно гладкими функциями.

Ф. Клейн в «Эрлангенской программе» систематизировал все виды однородных геометрий; согласно ему геометрия изучает все те свойства фигур, которые инвариантны относительно преобразований из некоторой группы. При этом каждая группа задаёт свою геометрию. Так, изометрии (движения) задаёт евклидову геометрию, группа аффинных преобразований — аффинную геометрию.

Для правильного понимания теорем и доказательств, нужно разобраться все по очереди и начинать с самого простого — самого определения слова «Теорема». И так что же говорят нам большинство книг и интернет ресурсов.

Теорема (др.-греч. θεώρημα — «зрелище, вид; взгляд; представление, положение») — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод). В отличие от теорем, аксиомами называются утверждения, которые, в рамках конкретной теории, принимаются истинными без всяких доказательств или обоснований.

Знаменитая теорема Пифагора.

Какая гласит что «В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.»

т.е. a 2 + b 2 = c 2

В математических текстах теоремами обычно называют только достаточно важные утверждения. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределённые утверждения). Менее важные утверждения-теоремы обычно называют леммами, предложениями, следствиями, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называют гипотезами.
Теория доказательства и опровержения является в современных условиях средством формирования научно обоснованных и юридически грамотных убеждений и утверждений.

Доказательство — это совокупность логических приемов обоснования истинности какого-либо суждения с помощью других истинных и связанных с ним суждений. Доказательство связано с убеждением, но не тождественно ему: доказательства должны основываться на данных науки и общественно-исторической практики, убеждения же могут быть основаны, например, на религиозной вере в догматы церкви, на предрассудках, на неосведомлённости людей в вопросах экономики и политики, на видимости доказательности, основанной на различного рода софизмах.

В математике доказательством называется цепочка логических умозаключений, показывающая, что при каком-то наборе аксиом и правил вывода верно некоторое утверждение. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы (построенная по специальным правилам последовательность утверждений, записанная на формальном языке) или текст на естественном языке, по которому при желании можно восстановить формальное доказательство. Доказанные утверждения в математике называют теоремами (в математических текстах обычно подразумевается, что доказательство кем-либо найдено; исключения из этого обычая в основном составляют работы по логике, в которых исследуется само понятие доказательства); если ни утверждение, ни его отрицание ещё не доказаны, то такое утверждение называют гипотезой. Иногда в процессе доказательства теоремы выделяются доказательства менее сложных утверждений, называемых леммами.

Вывод (лат. conclusio) — процесс рассуждения, в ходе которого осуществляется переход от некоторых исходных суждений (предпосылок) к новым суждениям — заключениям.

Понятие вывода используется во многих формальных системах: в логике, математике, информатике, логическом программировании и др. В математической логике правила логического вывода задаются в исчислении высказываний либо исчислении предикатов.

Аксиома (др.-греч. ἀξίωμα — утверждение, положение) — утверждение, в определённых рамках (теории, концепции, дисциплины) принимаемое истинным без доказательств, которое в последующем служит «фундаментом» для построения доказательств.

Впервые термин «аксиома» встречается у Аристотеля и перешёл в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно переписчики придерживались разных воззрений на различие этих понятий.

Аристотеля (384—322 до н. э.)

Как доказывать теоремы?

Процедура доказательства теоремы только кажется сложной. Достаточно уметь логически мыслить, иметь необходимые знания по данной научной дисциплине, и доказать теорему для вас не составит труда. Важно выполнять все действия четко в правильной последовательности.

В некоторых науках, к примеру, в алгебре и геометрии, одним из важнейших умений является умение доказывать теоремы. Это связано с тем, что доказанные теоремы впоследствии пригодятся для того, чтобы решать задачи. Нужно не просто выучить алгоритм доказательства, а суметь понять ее суть. Давайте разберемся, как доказывать теоремы.

Доказательство теорем

Для начала следует сделать чертеж, он должен быть четким и аккуратным. После этого нужно отметить на нем заданные условия. В графе «Дано9raquo; нужно записать все величины, которые вам изначально известны, и то, что нужно доказать. После этого можно заняться доказательством. По сути, это цепочка логически выстроенных мыслей, которые позволяют показать то, что какое-либо утверждение является верным. Доказательство теоремы подразумевает использование других теорем, аксиом, применение действия от противного и т.д.

Итак, доказательством теоремы является определенная последовательность действий, позволяющих получить утверждение, истинность которого нельзя оспорить. Как правило, наиболее трудным во время доказательства является как раз поиск последовательности логических рассуждений. Если же это удастся, то вы сможете доказать то, что от вас требовалось.

Как доказывать теоремы по геометрии без труда

Чтобы упростить себе задачу, можно разбить теорему на части, и доказывать каждую из них по отдельности, что в итоге приведет вас к результату. В некоторых случаях эффективно использовать метод «доказательства от противного». Тогда нужно начинать со слов «предположим обратное». Следует объяснить, почему в данном случае то или иное заключение невозможно. Заканчивать нужно словами «значит, первоначальное утверждение является верным. Теорема доказана».

Еще больше полезной информации по геометрии можно найти в разделе Геометрия .

teb-consulting.ru

СПРАВОЧНЫЙ МАТЕРИАЛ ПО ГЕОМЕТРИИ ДЛЯ 7-11 КЛАССОВ.

Уважаемые родители! Если Вы ищите репетитора по математике для Вашего ребёнка, то это объявление для Вас. Предлагаю скайп-репетиторство: подготовка к ОГЭ, ЕГЭ, ликвидация пробелов в знаниях. Ваши выгоды очевидны:

1) Ваш ребенок находится дома, и Вы можете быть за него спокойны;

2) Занятия проходят в удобное для ребенка время, и Вы даже можете присутствовать на этих занятиях. Объясняю я просто и доступно на всем привычной школьной доске.

3) Другие важные преимущества скайп-занятий додумаете сами!

Напишите мне по адресу: [email protected] или сразу добавляйтесь ко мне в скайп, и мы обо всём договоримся. Цены доступные.

P.S. Возможны занятия в группах по 2-4 учащихся.

С уважением Татьяна Яковлевна Андрющенко.

Друзья! Весь справочный материал (и по алгебре, и по геометрии) в виде сборника 431 формул и правил вы можете получить здесь. Распечатаете, и получится удобная книжечка! Инструкцию по распечатке смотрите здесь.

P.S. Друзья, конечно, это бесплатно!

Дорогие друзья! Готовитесь к ОГЭ или ЕГЭ?

Вам в помощь «Справочник по геометрии 7-9». Подробнее здесь.

Определение параллелограмма.

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны: AB||CD, AD||DC.

Противоположные стороны параллелограмма равны: AB=CD, AD=DC.

Противоположные углы параллелограмма равны:

A=C,B=D.

Сумма углов параллелограмма, прилежащих к одной его стороне составляет 180°.Например, ∠A+B=180°.

Любая диагональ параллелограмма делит его на два равных треугольника. Δ ABD=Δ BCD.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. AO=OC, BO=OD. Пусть АС=d1 и BD=d2 , ∠COD=α. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:

  • Если две противоположные стороны четырехугольника параллельны и равны, то этот четырехугольник — параллелограмм.
  • Если противоположные стороны четырехугольника попарно равны, то этот четырехугольник — параллелограмм.
  • Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Площадь параллелограмма.

1) S=ah;

Прямоугольник — это параллелограмм, у которого все углы прямые. ABCD — прямоугольник. Прямоугольник обладает всеми свойствами параллелограмма.

Диагонали прямоугольника равны.

AC=BD. Пусть АС=d1 и BD=d2 , ∠COD=α.

d1=d2 – диагонали прямоугольника равны. α – угол между диагоналями.

Квадрат диагонали прямоугольника равен сумме квадратов сторон прямоугольника:

Площадь прямоугольника можно найти по формулам:

1) S=ab; 2) S=(½)· d²∙sinα; (d- диагональ прямоугольника).

Около любого прямоугольника можно описать окружность, центр которой – точка пересечения диагоналей; диагонали являются диаметрами окружности.

Ромб.

Ромб — это параллелограмм, у которого все стороны равны.

ABCD — ромб.

Ромб обладает всеми свойствами параллелограмма.

Диагонали ромба взаимно перпендикулярны.

AC | BD.

Диагонали ромба являются биссектрисами его углов.

Площадь ромба.

1) S=ah;

4) S= P∙r, где P – периметр ромба, r – радиус вписанной окружности.

Квадрат.

Все стороны квадрата равны, диагонали квадрата равны и пересекаются под прямым углом.

Диагональ квадрата d=a√2.

Площадь квадрата. 1) S=a 2 ; 2) S=(½) d 2 .

Трапеция.

Основания трапеции AD||BC, MN-средняя линия

Площадь трапеции равна произведению полусуммы ее оснований на высоту:

S=(AD+BC)∙BF/2 или S=(a+b)∙h/2.

В равнобедренной (равнобокой) трапеции длины боковых сторон равны; углы при основании равны.

Площадь любого четырехугольника.

  • Площадь любого четырехугольника равна половине произведения его диагоналей на синус угла между ними:
  • Площадь любого четырехугольника равна половине произведения его периметра на радиус вписанной окружности:

Вписанные и описанные четырехугольники.

В выпуклом четырехугольнике, вписанном в круг, произведение диагоналей равно сумме произведений противоположных сторон (теорема Птолемея).

Если суммы противолежащих углов четырехугольника равны по 180°, то около четырехугольника можно описать окружность . Обратное утверждение также верно.

Если суммы противолежащих сторон четырехугольника равны (a+c=b+d), то в этот четырехугольник можно вписать окружность. Обратное утверждение также верно.

Окружность, круг.

1) Длина окружности С=2πr;

2) Площадь круга S=πr 2 ;

3) Длина дуги АВ:

4) Площадь сектора АОВ:

5) Площадь сегмента (выделенная область):

(«-» берут, если α 180°), ∠AOB=α – центральный угол. Дуга l видна из центра O под углом α.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: c²=a²+b².

Площадь прямоугольного треугольника.

SΔ=(½) a∙b, где a и b — катеты или SΔ=(½) c∙h, где с — гипотенуза, h –высота, проведенная к гипотенузе.

Радиус вписанной в прямоугольный треугольник окружности.

2r=a+b-c

Пропорциональные отрезки в прямоугольном треугольнике.

Высота, проведенная из вершины прямого угла к гипотенузе есть средняя пропорциональная величина между проекциями катетов на гипотенузу: h 2 =ac∙bc;

а каждый катет есть средняя пропорциональная величина между всей гипотенузой и проекцией данного катета на гипотенузу: a 2 =c∙ac и b 2 =c∙bc (произведение средних членов пропорции равно произведению ее крайних членов: h, a, b — средние члены соответствующих пропорций).

Теорема синусов.

В любом треугольнике стороны пропорциональны синусам противолежащих углов.

Следствие из теоремы синусов.

Каждое из отношений стороны к синусу противолежащего угла равно 2R, где R — радиус окружности, описанной около треугольника.

Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других ее сторон без удвоенного произведения этих сторон на косинус угла между ними.

Свойства равнобедренного треугольника.

В равнобедренном треугольнике (длины боковых сторон равны) высота, проведенная к основанию, является медианой и биссектрисой. Углы при основании равнобедренного треугольника равны.

Сумма внутренних углов любого треугольника составляет 180°, т. е. ∠1+∠2+∠3=180°.

Внешний угол треугольника (∠4) равен сумме двух внутренних, не смежных с ним, т. е. ∠4=∠1+∠2.

Средняя линия треугольника соединяет середины боковых сторон треугольника.

Средняя линия треугольника параллельна основанию и равна его половине: MN=AC/2.

Площадь треугольника.

Формула Герона.

Центр тяжести треугольника.

Центр тяжести треугольника — точка пересечения медиан, которая делит каждую медиану в отношении 2:1, считая от вершины.

Длина медианы, проведенной к стороне а:

Медиана делит треугольник на два равновеликих треугольника, площадь каждого из этих двух треугольников равна половине площади данного треугольника.

Биссектриса угла треугольника.

1) Биссектриса угла любого треугольника делит противоположную сторону на части, соответственно пропорциональные боковым сторонам треугольника:

2) если AD=βa, то длина биссектрисы:

3) Все три биссектрисы треугольника пересекаются в одной точке.

Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис углов треугольника.

Площадь треугольника SΔ=(½) P∙r, где P=a+b+c, r-радиус вписанной окружности.

Радиус вписанной окружности можно найти по формуле:

Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника.

Радиус окружности, описанной около любого треугольника:

Радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы: R=АВ/2;

Медианы прямоугольных треугольников, проведенных к гипотенузе, равны половине гипотенузы (это радиусы описанной окружности) OC=OC1=R.

Формулы для радиусов вписанных и описанных окружностей правильных многоугольников.

Окружность, описанная около правильного n-угольника.

Окружность, вписанная в правильный n-угольник.

Сумма внутренних углов любого выпуклого n-угольника равна 180°(n-2).

Сумма внешних углов любого выпуклог0 n-угольника равна 360°.

Прямоугольный параллелепипед.

Все грани прямоугольного параллелепипеда — прямоугольники. a, b, c – линейные размеры прямоугольного параллелепипеда (длина, ширина, высота).

1) Диагональ прямоугольного параллелепипеда d 2 =a 2 +b 2 +c 2 ;

4) Объем прямоугольного параллелепипеда V=Sосн.∙Н илиV=abc.

Куб.

1) Все грани куба – квадраты со стороной а.

2) Диагональ куба d=a√3.

3) Боковая поверхность куба Sбок.=4а 2 ;

4) Полная поверхность куба Sполн.=6а 2 ;

5) Объем куба V=a 3 .

Прямой параллелепипед (в основании лежит параллелограмм или ромб, боковое ребро перпендикулярно основанию).

3) Объем прямого параллелепипеда V=Sосн.∙Н.

Наклонный параллелепипед.

В основании параллелограмм или прямоугольник или ромб или квадрат, а боковые ребра НЕ перпендикулярны плоскости основания.

1) Объем V=Sосн.∙Н;

2) Объем V=Sсеч.l, где l боковое ребро, Sсеч.-площадь сечения наклонного параллелепипеда, проведенного перпендикулярно боковому ребру l.

Прямая призма.

Боковая поверхность Sбок.=Pосн.∙Н;

Объем прямой призмы V=Sосн.∙Н.

Наклонная призма.

Боковая и полная поверхности, а также объем можно находить по тем же формулам, что и в случае прямой призмы. Если известна площадь сечения призмы, перпендикулярного ее боковому ребру, то объем V=Sсеч.l, где l- боковое ребро, Sсеч.-площадь сечения, перпендикулярного боковому ребру l.

Пирамида.

1) боковая поверхность Sбок. равна сумме площадей боковых граней пирамиды;

2) полная поверхность Sполн.=Sосн.+Sбок.;

3) объем V=(1/3) Sосн.∙Н.

4) У правильной пирамиды в основании лежит правильный многоугольник, а вершина пирамиды проектируется в центр этого многоугольника, т. е. в центр описанной и вписанной окружностей.

5) Апофема l –это высота боковой грани правильной пирамиды. Боковая поверхность правильной пирамиды Sбок.=(½) Pосн.l.

Теорема о трех перпендикулярах.

Прямая, проведенная на плоскости через основание наклонной, перпендикулярно ее проекции, перпендикулярна и самой наклонной.

Обратная теорема. Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции этой наклонной.

Усеченная пирамида.

Если S и s соответственно площади оснований усеченной пирамиды, то объем любой усеченной пирамиды

где h-высота усеченной пирамиды.

Боковая поверхность правильной усеченной пирамиды

где P и p соответственно периметры оснований правильной усеченной пирамиды,

l-апофема (высота боковой грани правильной усеченной пирамиды).

Цилиндр.

Боковая поверхность Sбок.=2πRH;

Полная поверхность Sполн.=2πRH+2πR 2 или Sполн.=2πR (H+R);

Объем цилиндра V=πR 2 H.

Конус.

Боковая поверхность Sбок.= πRl;

Объем пирамиды V=(1/3)πR 2 H. Здесь l – образующая, R — радиус основания, H – высота.

Шар и сфера.

Площадь сферы S=4πR 2 ; Объем шара V=(4/3)πR 3 .

www.mathematics-repetition.com

Это интересно:

  • Правила приема в колледжи в 2018 Национальный исследовательский Подай документы онлайн Факультеты ТГУ Особенности приема в 2018 году В 2018 году в Правилах приема в ТГУ есть особенности: 1. Информация о приеме на обучение по программам бакалавриата и программам […]
  • Основная страна пребывания это Основная страна пребывания это Оформление шенгенвизы, ВНЖ, ПМЖ и водительских прав! Мы экономим ваше время! Европейская иммиграционная служба Оставьте заявку на бесплатную консультацию! Сдача отпечатков пальцев для получения […]
  • Реестр организаций таможенного союза Ведение реестра предприятий Таможенного Союза Содержание Общая информация Все организации и лица, осуществляющие производство, переработку и (или) хранение подконтрольных товаров, перемещаемых с территории одного государства – члена […]
  • Есв штраф за неуплату Как не нарваться на штрафы: детальная инструкция для «единщиков» Физлица -предприниматели, пребывающие на упрощенной системе, не застрахованы от ошибок, которые могут привести к нарушениям законодательства, а следовательно – и к […]
  • Заявление на выдачу шенгенской визы в эстонию Виза в Эстонию: самостоятельно её можно получить за 4 дня через посольство Эстония входит в состав Шенгенской зоны, поэтому для въезда туда всем россиянам потребуется наличие действующей единой визы – Шенгена. Виза в Эстонию […]
  • Сроки пребывания в шенгенской зоне Инструкция: как считать дни шенгенской мультивизы Страховка онлайн Для правильного подсчета дней в шенгенской мультивизе можно использовать калькулятор пребывания в Шенгене (short-stay calculator) на сайте МВД ЕС. Для чего нужен […]