Биология и медицина

Дигибридное скрещивание (опыты Менделя)

Скрещивание, в котором участвуют две пары аллелей, генов, расположенных в разных, негомологичных хромосомах, называется дигибридным. При дигибридном скрещивании Г. Мендель изучал наследование двух пар признаков, за которые отвечают пары аллелей, лежащих (как выяснилось значительно позднее) в разных парах гомологичных хромосом.

Если в дигибридном скрещивании разные пары аллельных генов находятся в разных парах гомологичных хромосом, то пары признаков наследуются независимо друг от друга ( закон независимого наследования ).

Рассмотрим опыт Г. Менделя, который привел его к открытию закона независимого наследования. Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам — окраски семян (желтые и зеленые) и формы семян (гладкие и морщинистые). Доминантные признаки — желтая окраска (А) и гладкая форма семян (В). Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии этих гамет все потомство будет единообразным ( рис. 9 ).

При образовании гамет у гибрида (F1) из каждой пары аллельных генов в гамету попадет только один. При этом вследствие случайности расхождения отцовских и материнских хромосом в мейозе I аллель А может попасть в одну гамету с аллелем В или с аллелем b. Точно так же, как аллель а может объединиться в одной гамете с аллелем В или b ( рис. 10 ). Поскольку в каждом организме образуется много половых клеток, в силу статистических закономерностей у гибрида равновероятно образование четырех сортов гамет: АВ, Ab, aB, ab, в равных количествах. Во время оплодотворения каждая из четырех типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета ( рис. 9 ). Над решеткой по горизонтали выписываются гаметы одного родителя, а по левому краю решетки по вертикали — гаметы другого родителя. В квадратики вписываются генотипы зигот, образующихся при слиянии гамет. Нетрудно подсчитать, что по фенотипу потомство делится на четыре группы в следующем отношении: 9 желтых гладких; 3 желтых морщинистых; 3 зеленых гладких; 1 зеленая морщинистая ( рис. 9 ). Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение числа гладких к числу морщинистых для каждой пары равно 3:1. Таким образом, в дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как в моногибридном скрещивании, т.е. независимо от другой пары признаков. Иначе можно сказать, что расщепление по каждой паре генов идет независимо от других пар генов. Однако в отличие от закона расщепления, который справедлив всегда, закон независимого наследования проявляется только в тех случаях, когда пары аллельных генов расположены в разных парах гомологичных хромосом.

Законы Г. Менделя статистичны, они подтверждаются только в опытах с достаточно большим материалом (подсчеты сотен и тысяч особей).

medbiol.ru

Побиологии.рф

Сцепленное наследование. Генетика пола.

В 1911 —1912 годах Т. Морган и сотрудники проверили проявление третьего закона Менделя на мухах-дрозофилах. Они учитывали две пары альтернативных признаков: серый (В) и черный (Ь) цвет тела и нормальные (V) и короткие (v) крылья. При скрещивании гомозиготных особей с серым цветом тела и нормальными крыльями с мухами с черным цветом тела и короткими крыльями получили единообразие гибридов первого поколения — мух с серым телом и нормальными крыльями. Подтвердился I закон Менделя.

Далее Морган решил провести анализирующее скрещивание гибридов первого поколения. Рецессивную гомозиготную самку он скрестил с дигетерозиготным самцом.

Морган ожидал получить, согласно третьему закону Менделя, мух четырех разных фенотипов в равном количестве (по 25%), а получил двух фенотипов (по 50% каждого). Морган пришел к выводу, что поскольку у организмов генов много, а хромосом относительно мало, то, следовательно, в каждой хромосоме содержится большое количество генов, и гены, локализованные в одной хромосоме, передаются вместе (сцепленно). Цитологические основы этого явления можно пояснить следующей схемой (рис. 1). Одна из пары гомологичных хромосом содержит два доминантных гена (BV), а другая — два рецессивных (bv). При мейозе хромосома с генами BV попадет в одну гамету, а хромосома с генами bv в другую.

Рис. 1. Схема расхождения гомологичных хромосом в мейозе при полном сцеплении.

Таким образом, у дигетерозиготного организма образуются не четыре типа гамет (когда гены расположены в разных хромосомах), а только два, и, следовательно, потомки будут иметь два сочетания признаков (как у родителей).

Гены, локализованные в одной хромосоме, обычно передаются вместе и составляют одну группу сцепления. Так как в гомологичных хромосомах локализованы аллельные гены, то группу сцепления составляют две гомологичные хромосомы, и, следовательно, количество групп сцепления соответствует количеству пар хромосом (или гаплоидному числу хромосом). Так, у мухи-дрозофилы всего 8 хромосом — 4 труппы сцепления, у человека 46 хромосом — 23 группы сцепления.

Если гены, локализованные в одной хромосоме, передаются всегда вместе, то такое сцепление называется полным. Однако при дальнейшем анализе сцепления генов было обнаружено, что в некоторых случаях оно может нарушаться. Если дигетерозиготную самку мухи-дрозофилы скрестить с рецессивным самцом, результат будет следующий:

Морган предполагал получить опять мух четырех фенотипов по 25%, а получил потомков четырех фенотипов, но в другом соотношении: по 41,5% особей с серым телом и нормальными крыльями и с черным телом и короткими крыльями и по 8,5% мух с серым телом и короткими крыльями и с черным телом и нормальными крыльями. В этом случае сцепление генов неполное, т.е. гены, локализованные в одной хромосоме, не всегда передаются вместе. Это связано с явлением кроссинговера, которое заключается в обмене участками гомологичных хроматид в процессе их конъюгации в профазе мейоза I (рис. 2). Кроссинговер у гетерозиготных организмов приводит к перекомбинации генетического материала.

Рис. 2. Схема кроссинговера

Каждая из образовавшихся хроматид попадает в отдельную гамету. Образуются 4 типа гамет, но в отличие от свободного комбинирования их процентное соотношение будет неравным, так как кроссинговер происходит не всегда. Частота кроссииговера зависит от расстояния между генами: чем больше расстояние, тем чаще может происходить кроссинговер. Расстояние между генами определяется в процентах кроссииговера — 1 морганида равна 1 % кроссинговера.

Итак, свободное комбинирование генов, согласно третьему закону Менделя, происходит в том случае, когда исследуемые гены расположены в разных хромосомах. Неполное сцепление наблюдается тогда, когда происходит перекомбинация генов (кроссинговер), расположенных в одной хромосоме. Если гены расположены в одной хромосоме и кроссинговер не происходит, сцепление будет полным. Кроссинговер имеет место у всех растений и животных, за исключением самца мухи-дрозофилы и самки тутового шелкопряда.

Основные положения хромосомной теории наследственности:

— гены расположены в хромосомах линейно в определенных локусах (участках); аллельные гены занимают одинаковые локусы в гомологичных хромосомах;

—гены гомологичных хромосом образуют группу сцепления; число их равно гаплоидному набору хромосом;

—между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);

—расстояние между генами пропорционально проценту кроссииговера и выражается в морганидах.

Пол организма — это совокупность признаков и анатомических структур, обеспечивающих половой путь размножения и передачу наследственной информации.

В определении пола будущей особи ведущую роль играет хромосомный аппарат зиготы — кариотип. Различают хромосомы, одинаковые для обоих полов — аутосомы, и половые хромосомы.

В кариотипе человека содержится 44 аутосомы и 2 половых хромосомы — Х и Y. За развитие женского пола у человека отвечают две Х-хромосомы, т. е. женский пол гомогаметен. Развитие мужского пола определяется наличием Х- и Y-хромосом, т. е. мужской пол гетерогаметен. Сочетание половых хромосом в зиготе определяет пол будущего организма (рис. 3).

Рис. 3. Схема определения пола у человека. Половина сперматозоидов несет X -хромосому, а другая половина — Y -хромосому. Пол ребенка зависит от того, какой сперматозоид оплодотворит яйцеклетку

У всех млекопитающих, человека и мухи-дрозофилы, гомогаметным является женский пол, а гетерогаметным — мужской. У птиц и бабочек, наоборот, гомогаметен мужской пол, а женский — гетерогаметен.

Признаки, сцепленные с полом

Это признаки, которые кодируются генами, находящимися на половых хромосомах. У человека признаки, кодируемые генами Х-хромосомы, могут проявляться у представителей обоих полов, а кодируемые генами Y-хромосомы — только у мужчин.

Следует иметь в виду, что в мужском генотипе только одна Х-хромосома, которая почти не содержит участков, гомологичных с Y-хромосомой, поэтому все локализованные в Х-хромосоме гены, в том числе и рецессивные, проявляются в фенотипе в первом же поколении.

В половых хромосомах содержатся гены, регулирующие проявление не только половых признаков. Х-хромосома имеет гены, отвечающие за свертываемость крови, цветовое восприятие, синтез ряда ферментов. В Y-хромосоме содержится ряд генов, контролирующих признаки, наследуемые по мужской линии (голандрические признаки): волосистость ушной раковины, наличие кожной перепонки между пальцами и др. Известно очень мало генов, общих для Х- и Y-хромосом.

Различают Х-сцепленное и Y-сцепленное (голандрическое) наследование.

Х-сцепленное наследование

Так как Х-хромосома присутствует в кариотипе каждого человека, то и признаки, наследуемые сцеплено с Х-хромосомой, проявляются у представителей обоих полов. Женщины получают эти гены от обоих родителей и через свои гаметы передают их потомкам. Мужчины получают Х-хромосому от матери и передают ее своему потомству женского пола.

Различают Х-сцепленное доминантное и Х-сцепленное рецессивное наследование. У человека Х-сцепленный доминантный признак передается матерью всему потомству. Мужчина передает свой Х-сцепленный доминантный признак лишь своим дочерям. Х-сцепленный рецессивный признак у женщин проявляется лишь при получении ими соответствующего аллеля от обоих родителей. У мужчин он развивается при получении рецессивного аллеля от матери. Женщины передают рецессивный аллель потомкам обоих полов, а мужчины — только дочерям.

При Х-сцепленном наследовании возможен промежуточный характер проявления признака у гетерозигот.

Y-сцепленные гены присутствуют в генотипе только мужчин и передаются из поколения в поколение от отца к сыну.

xn--90aeobapscbe.xn--p1ai

Тема 10 и 11: «Моногибридное и дигибридное скрещивание», «Генетика пола».

Генетика — это наука о закономерностях наследственности и изменчивости организмов.

Условные обозначения: Р — родители, F — поколение (дети), г — гаметы, А, В — доминантные признаки; а, в — рецессивные признаки

I. Моногибридное скрещивание по одной паре признаков.

1. При полном доминировании проявляется только доминантный признак.

2. При неполном доминировании признак имеет среднее (промежуточное) значение между доминантным и рецессивным

при полном доминировании.

при неполном доминировании.

I. Закон единообразия первого поколения. (Г. Мендель).

При скрещивании двух особей с противоположными признаками в первом поколении все гибриды одинаковы и похожи на одного из родителей.

II. Закон расщепления. (Г.Мендель).

При скрещивании гибридов I поколения во втором поколении наблюдается расщепление в соотношении 3:1 по фенотипу.

Закон единообразия I поколения соблюдается.

III. Закон независимого наследования признаков (Г. Мендель).

При скрещивании гибридов I поколения по двум парам признаков наследование по каждой паре признаков идет независимо друг от друга и образуются четыре фенотипические группы с новыми сочетаниями.
Расщепление по фенотипу 9:3:3:1

Если при скрещивании особи с доминантным признаком с рецессивной гомозиготной особью полученное потомство единообразно, то анализируемая особь с доминантным признаком гомозиготна (АА).

Если при скрещивании особи с доминантным признаком с рецессивной гомозиготой полученное потомство дает расщепление 1 : 1 , то анализируемая особь с доминантным признаком гетерозиготна (Аа).

Закон сцепленного наследования генов, находящихся в одной хромосоме (Т. Морган).

Гены, находящиеся в одной хромосоме, наследуются совместно, сцепленно.

Сцепление генов может нарушаться в результате кроссинговера. Количество кроссверных особей всегда значительно меньше, чем количество основных особей (Т. Морган).

V. Генетика пола

Пол определяется наличием пары половых хромосом.Все остальные пары хромосом в кариотипе называются аутосомами.

Соотношение полов 1:1

Соотношение полов 1:1

Соотношение полов 1:1

Пол организма определяется сочетанием половых хромосом.

Пол, содержащий одинаковые половые хроммосомы (XX), называется гомогаметным, а различные половые хромосомы (XY) — гетерогаметным.

Гетерогаметные особи образуют два типа гамет. У большинства организмов (млекопитающих, амфибий, рептилий, многих беспозвоночных) женский пол гомогаметный, а мужской — гетерогаметный (I вариант)

У птиц, некоторых рыб, бабочек гетерогаметны самки, а гомогаметны самцы (II вариант)

У прямокрылых, пауков, жуков самцы не имеют Y хромосому из пары. Тип ХО.

VI. Наследование признаков, сцепленных с полом.

Признаки, гены которых локализованы в половых хромосомах, называются сцепленными с полом

Если одна из X хромосом содержит рецессивный ген, определяющий проявления аномального признака, то носителем признака является женщина, а признак проявляется у мужчин.

Рецессивный признак от матерей передается сыновьям и проявляется, а от отцов передается дочерям.

Примером наследования признаков, сцепленных с полом у человека, является гемофилия и дальтонизм.

Задачи и тесты по теме «Тема 10 и 11: «Моногибридное и дигибридное скрещивание», «Генетика пола».»

  • Моногибридное скрещивание — Основы генетики. Закономерности наследования Общие биологические закономерности (9–11 класс)

Рекомендации к теме

Проработав эти темы, Вы должны уметь:

  1. Дать определения: ген, доминантный признак; рецессивный признак; аллель; гомологичные хромосомы; моногибридное скрещивание, кроссинговер, гомозиготный и гетерозиготный организм, независимое распределение, полное и неполное доминирование, генотип, фенотип.
  2. С помощью решетки Пеннета проиллюстрировать скрещивание по одному или двум признакам и указать, каких численных отношений генотипов и фенотипов следует ожидать в потомстве от этих скрещиваний.
  3. Изложить правила наследования, расщепления и независимого распределения признаков, открытие которых было вкладом Менделя в генетику.
  4. Объяснить как мутации могут повлиять на белок, кодируемым тем или иным геном.
  5. Указать возможные генотипы людей с группами крови А; В; АВ; О.
  6. Привести примеры полигенных признаков.
  7. Указать хромосомный механизм определения пола и типы наследования сцепленных с полом генов млекопитающих, использовать эти сведения при решении задач.
  8. Объяснить, в чем заключается различие между признаками, сцепленными с полом и признаками, зависимыми от пола; привести примеры.
  9. Объяснить, как наследуются такие генетические заболевания человека как гемофилия, дальтонизм, серповидно-клеточная анемия.
  10. Назвать особенности методов селекции растений, животных.
  11. Указать основные направления биотехнологии.
  12. Уметь решать по данному алгоритму простейшие генетические задачи:

  • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А — доминантный а — рецессивный.
  • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
  • Запишите генотип гибридов F1.
  • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
  • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.

Схема оформления задач.

Буквенные обозначения:
а) доминантный признак _______________
б) рецессивный признак _______________

F1 (генотип первого поколения)

Соотношение фенотипов в F2:_____________________________
Ответ:_________________________

Примеры решения задач на моногибридное скрещивание.

Задача. «В семье Ивановых двое детей: кареглазая дочь и голубоглазый сын. Мама этих детей голубоглазая, но ее родители имели карие глаза. Как наследуется окраска глаз у человека? Каковы генотипы всех членов семьи? Окраска глаз — моногенный аутосомный признак».

Признак окраски глаз контролируется одним геном (по условию). Мама этих детей голубоглазая, а ее родители имели карие глаза. Это возможно только в ТОМслучае, если оба родителя были гетерозиготны, следовательно, карие глаза доминируют над голубыми. Таким образом, бабушка, дедушка, папа и дочь имели генотип (Аа), а мама и сын — аа.

Задача. «Петух с розовидным гребнем скрещен с двумя курицами, тоже имеющими розовидный гребень. Первая дала 14 цыплят, все с розовидным гребнем, а вторая — 9 цыплят, из них 7 с розовидным и 2 с листовидным гребнем. Форма гребня — моногенный аутосомный признак. Каковы генотипы всех трех родителей?»

До определения генотипов родителей необходимо выяснить характер наследования формы гребня у кур. При скрещивании петуха со второй курицей появились 2 цыпленка с листовидным гребнем. Это возможно при гетерозиготности родителей, следовательно, можно предположить, что розовидный гребень у кур доминирует над листовидным. Таким образом, генотипы петуха и второй курицы — Аа.

При скрещивании этого же петуха с первой курицей расщепления не наблюдалось, следовательно, первая курица была гомозиготной — АА.

Задача. «В семье кареглазых праворуких родителей родились разнояйцевые близнецы, один из которых кареглазый левша, а другой голубоглазый правша. Какова вероятность рождения следующего ребенка, похожим на своих родителей?»

Рождение у кареглазых родителей голубоглазого ребенка свидетельствует о рецессивности голубой окраски глаз, соответственно рождение у праворуких родителей леворукого ребенка указывает на рецессивность лучшего владения левой рукой по сравнению с правой. Введем обознанения аллелей: А — карие глаза, а — голубые глаза, В — правша, в — левша. Определим генотипы родителей и детей:

А_вв — фенотипический радикал, который показывает, что данный ребенок с левша с карими глазами. Генотип этого ребенка может быть — Аавв, ААвв.

Дальнейшее решение этой задачи осуществляется традиционным способом, путем построения решетки Пеннета.

www.yaklass.ru

Сцепленное наследование генов

Дальнейшие исследования генетиков показали, что законы Менделя о независимом наследовании признаков при дигибридном скрещивании применимы лишь тогда, когда разные гены располагаются в разных парах гомологичных хромосом. В том случае, если два гена находятся в одной паре гомологичных хромосом, расщепление в потомстве гибридов будет другим.

У любого организма генов значительно больше, чем хромосом. Например, у человека имеется около миллиона генов, а хромосом всего 23 пары. Следовательно, в одной хромосоме размещается в среднем несколько тысяч генов. Гены, расположенные в одной хромосоме, называют сцепленными. Все гены этой хромосомы образуют группу сцепления, которая при мейозе обычно попадает в одну гамету.

Значит, гены, входящие в одну группу сцепления, не подчиняются закону независимого наследования, а при дигибридном скрещивании вместо ожидаемого расщепления по фенотипу в соотношении 9:3:3:1 дают соотношение 3:1, как при моногибридном скрещивании (рис. 72).

Закономерности сцепленного наследования были установлены американск 1000 им биологом Томасом Морганом (1866-1945). В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину крыльев определяют следующие пары аллелей: А — серое тело, а — черное тело, В — длинные крылья, b — зачаточные крылья. Гены, отвечающие за окраску тела и длину крыльев, находятся в одной паре гомологичных хромосом и наследуются сцепленно.

Схематично пары гомологичных хромосом и локализованных в них генов можно изобразить так: ; . Для сравнения представим запись генов, локализованных в разных парах гомологичных хромосом: ; .

При дальнейшем скрещивании между собой гибридных мух первого поколения в F2 не произошло ожидаемого расщепления по фенотипу 9:3:3:1. Вместо этого в F2 были получены мухи с родительскими фенотипами в соотношении примерно 3:1. Появление в F2 двух фенотипов вместо четырех позволило сделать вывод, что гены окраски тела и длины крыльев дрозофил находятся в одной хромосоме. Так был установлен закон Т.Моргана: гены, расположенные в одной хромосоме, наследуются совместно — сцепленно, то есть наследуются преимущественно вместе.

Однако при дигибридном скрещивании при сцепленном наследовании признаков не всегда появляются особи только двух фенотипов. Иногда появляются особи еще двух фенотипов с перекомбинацией (новым сочетанием) родительских признаков: серое тело — зачаточные крылья, черное тело — длинные крылья. (Особей с такими фенотипами немного — около 8,5% каждого типа.) Почему же нарушается сцепление генов и появляются особи с новыми фенотипами? Было установлено, что сцепление генов может быть полным и неполным.

Полное сцепление наблюдается в том случае, если скрещиваются серый самец с длинными крыльями и самка с черным телом и зачаточными крыльями. Расщепление по фенотипу в этом случае будет 1:1, то есть наблюдается полное сцепление генов в одной хромосоме.

При скрещивании серой длиннокрылой самки с самцом, имеющим черное тело и зачаточные крылья, расщепление по фенотипу будет примерно 41,5:41,5:8,5:8,5, что характеризует неполное сцепление. Причина нарушения сцепления заключается в том, что в ходе мей-оза происходит кроссинговер и гомологичные хромосомы обмениваются своими участками. В результате гены, расположенные в одной из гомологичных хромосом, оказываются в другой хромосоме. Возникают новые сочетания признаков.

У самцов дрозофил в мейозе кроссинговер не происходит, поэтому при скрещивании серого длиннокрылого самца дрозофилы с рецессивной самкой с черным телом и зачаточными крыльями сцепление будет полным. Неполное сцепление наблюдается в том случае, если самка гетерозиготна, а самец гомозиготен. В данном примере кроссинговер происходит примерно у 17% самок.

Таким образом, если не происходит перекреста хромосом и обмена генами, то наблюдается полное сцепление генов. При наличии кроссин-говера сцепление генов бывает неполным. Благодаря перекресту хромосом возникают новые сочетания генов и признаков. Чем дальше друг от друга расположены гены в хромосоме, тем больше вероятность перекреста между ними и обмена участками хромосом.

Данные о частоте перекреста между гомологичными хромосомами используются для составления генетических карт, которые показывают расположение генов в хромосомах и расстояния между отдельными генами.

www.agrojour.ru

Наследование генов и признаков расположенных в разных хромосомах

Изучение наследования одной пары аллелей позволило Менделю установить ряд важных генетических закономер­ностей: доминирование, неизменность рецессивных аллелей у гибридов, расщепление потомства гибридов Ао изучаемому признаку в отношении 3:1. Явление расщепления позво­лило предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельной пары.

Однако организмы отличаются друг от друга по многим признакам. Установить закономерности наследования двух и более пар альтернативных признаков, гены которых нахо­дятся в разных парах гомологичных хромосом, можно пу­тем дигибридного или полигибридного скрещивания.

Дигибридным называют скрещивание, при котором рассматривается наследование и производится точный качественный учет потомства по двум парам альтернативных признаков, а точнее, по взаимоисключающим вариантам обоих признаков.

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам, определяющим окраску семян (желтые и зеленые) и форму семян (гладкие и морщинистые). Доминантные признаки — желтая окраска (А) и гладкая форма (В) семян. Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии этих гамет все потомство будет единообраз­ным.

При образовании гамет у дигибрида из каждой пары ал­лельных генов, расположенных в различных парах гомоло­гичных хромосом, в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материн­ских хромосом в первом делении мейоза ген А может с рав­ной вероятностью попасть в одну гамету с геном В или с ге­ном Ь. Точно так же как и ген а может объединиться в одной гамете с геном В или Ь. Поскольку в каждом организме об­разуется много половых клеток, в силу статистических закономерностей у гибрида — дигетерозиготного организма, образуются четыре сорта гамет в одинаковом количестве (по 25%): AB, Ab, aB, ab.

При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каж­дой. В образующихся зиготах возникают различные комби­нации генов.

Независимое распределение признаков в потомстве и воз­никновение различных комбинаций генов, определяющее развитие этих признаков, при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных гомологичных хромосомах.

Теперь можно сформулировать третий закон Менделя: при скрещивании двух гомозиготных особей, отличающих­ся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки на­следуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

На законах Менделя основан анализ расщепления и в бо­лее сложных случаях — при различиях особей по трем, четырем и более парам признаков.

Если родительские формы различаются по одной паре признаков , во втором поколении наблюдается расщепление 3:1, для дигибридного скрещивания это будет 9:3:3:1. Можно рассчитать также число сортов гамет , образующих ­ ся у гибридов , используя специальную ф ормулу.

У дигетерозиготы АаВЬ — четыре сорта гамет, или 2 2 — АВ, АЬ, аВ и ab .

У тригетерозиготы АаВЬСс — восемь сортов гамет, или 2 3 — ABC , АВс, AbC , Abe , аВС, аВс, аЬС и abc . Общая фор­мула расчета гамет у полигибридов — 2 П , где п — число ге­терозиготных пар генов в генотипе.

Анализирующее скрещивание. Разработанный Менде­лем гибридологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен орга­низм, имеющий доминантный фенотип по исследуемому гену (или исследуемым генам). Для этого скрещивают особь с не­известным генотипом и организм, гомозиготный по рецес­сивной аллели (аллелям), имеющий рецессивный фенотип.

Если доминантная особь гомозиготна, потомство от та­кого скрещивания будет единообразным и расщепления не произойдет.

sites.google.com

Это интересно:

  • Ук рф 2018 статья 264 Статья 264. Нарушение правил дорожного движения и эксплуатации транспортных средств Статья 264. Нарушение правил дорожного движения и эксплуатации транспортных средств См. комментарии к статье 264 УК РФ О судебной практике по делам о […]
  • Приказ минздрава 314 Приказ Минздрава РФ от 09.08.01 № 314 "О порядке получения квалификационных категорий". МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИКАЗот 9 августа 2001 г. № 314 О ПОРЯДКЕ ПОЛУЧЕНИЯ КВАЛИФИКАЦИОННЫХ КАТЕГОРИЙ В […]
  • Приказ 362 от 09062011 Приказ Федеральной налоговой службы от 9 июня 2011 г. N ММВ-7-6/[email protected] "Об утверждении форм и форматов сообщений, предусмотренных пунктами 2 и 3 статьи 23 Налогового кодекса Российской Федерации, а также порядка заполнения форм […]
  • Ставки налога на усн в 2018г Налог на имущество при УСН в 2018 году Индивидуальные предприниматели, а также организации, которые применяют УСН, освобождаются от ряда налогов. В числе налогов, которые «упрощенцы» не платят – налог на имущество. Тем не менее, […]
  • Как узаконить строение в крыму Узаконивание самовольных строений Description Самовольными постройками считаются объекты недвижимости, которые были возведены: на территории земельного участка, не отведенного для этой цели (например, строительство жилого дома […]
  • Приказ о направлении в командировку форма Приказ на командировку в 2016 году: образец (форма Т-9) Обновление: 15 ноября 2016 г. В 2016 году в свете отмены обязательности служебного задания и командировочного удостоверения на практике возникал вопрос о необходимости в […]